5.1 Instantaneous Frequency

Definition 5.8. The *generalized sinusoidal* signal is a signal of the form

$$x(t) = A\cos\left(\theta(t)\right) \tag{52}$$

where $\theta(t)$ is called the **generalized angle**.

- The generalized angle for conventional sinusoid is $2\pi f_c t + \phi$.
- In [3, p 208], $\theta(t)$ of the form $2\pi f_c t + \phi(t)$ is called the **total instantaneous angle**.

Definition 5.9. If $\theta(t)$ in (52) contains the message information m(t), we have a process that may be termed **angle modulation**.

- The amplitude of an angle-modulated wave is constant.
- Another name for this process is **exponential modulation**.
 - The motivation for this name is clear when we write x(t) as $A\text{Re }\{e^{j\theta(t)}\}$.
 - \circ It also emphasizes the nonlinear relationship between x(t) and m(t).
- Since exponential modulation is a nonlinear process, the modulated wave x(t) does not resemble the message waveform m(t).
- **5.10.** Suppose we want the frequency f_c of a carrier $A\cos(2\pi f_c t)$ to vary with time as in (51). It is tempting to consider the signal

$$A\cos(2\pi g(t)t), \qquad f(t) = \frac{1}{2\pi} \frac{1}{dt} \theta(t)$$
 (53)

where g(t) is the desired frequency at time t.

$$= \frac{1}{2\pi} \frac{d}{dt} \left(\frac{\partial u}{\partial t} \right) = g(t)$$
ignal of the form 53
$$+ t = 2$$

Euler's

Example 5.11. Consider the generalized sinusoid signal of the form 53 above with $g(t) = t^2$. We want to find its frequency at t = 2.

(a) Suppose we guess that its frequency at time t should be g(t). Then, at time t=2, its frequency should be $t^2=4$. However, when compared with $\cos(2\pi(4)t)$ in Figure 32a, around t=2, the "frequency" of $\cos(2\pi(t^2)t)$ is quite different from the 4-Hz cosine approximation. Therefore, 4 Hz is too low to be the frequency of $\cos(2\pi(t^2)t)$ around t=2.

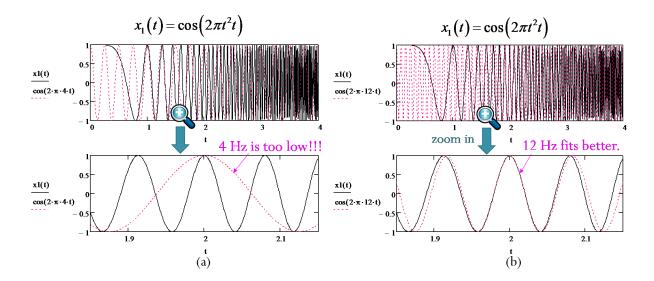


Figure 32: Approximating the frequency of $\cos(2\pi(t^2)t)$ by (a) $\cos(2\pi(4)t)$ and (b) $\cos(2\pi(12)t)$.

(b) Alternatively, around t = 2, Figure 32b shows that $\cos(2\pi(12)t)$ seems to provide a good approximation. So, 12 Hz would be a better answer.

Definition 5.12. For generalized sinusoid $A\cos(\theta(t))$, the **instantaneous frequency**²² at time t is given by

$$f(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t). \tag{54}$$

Example 5.13. For the signal $\cos(2\pi(t^2)t)$ in Example 5.11,

$$\theta\left(t\right) = 2\pi\left(t^2\right)t$$

and the instantaneous frequency is

$$f(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t) = \frac{1}{2\pi} \frac{d}{dt} \left(2\pi \left(t^2 \right) t \right) = 3t^2.$$

In particular, $f(2) = 3 \times 2^2 = 12$.

5.14. The instantaneous frequency formula (54) implies

$$\theta(t) = 2\pi \int_{-\infty}^{t} f(\tau)d\tau = \theta(t_0) + 2\pi \int_{t_0}^{t} f(\tau)d\tau.$$
 (55)

²²Although f(t) is measured in hertz, it should not be equated with spectral frequency. Spectral frequency f is the independent variable of the frequency domain, whereas instantaneous frequency f(t) is a time-dependent property of waveforms with exponential modulation.